Discours sur l'origine de l'univers by Étienne Klein

By Étienne Klein

D'où vient l'univers ? Et d'où vient qu'il y a un univers ? Irrépressiblement, ces questions se posent à nous.

Et dès qu'un discours prétend nous éclairer, nous tendons l'oreille, avides d'entendre l'écho du tout optimal sign: les accélérateurs de particules vont bientôt nous révéler l'origine de l'univers en produisant des "big bang sous terre"; les données recueillies par le satellite tv for pc Planck nous dévoiler le "visage de Dieu"; certains disent même qu'en vertu de l. a. loi de los angeles gravitation l'univers a pu se créer de lui-même, à partir de rien...

Le grand dévoilement ne serait donc devenu qu'une affaire d'ultimes petits pas ? Rien n'est moins sûr... automobile de quoi parle l. a. body quand elle parle d'origine " ? Qu'est-ce que les théories actuelles sont réellement en mesure de nous révéler ?

A bien les examiner, les views que nous offre los angeles cosmologie contemporaine sont plus vertigineuses encore que tout ce que nous avons imaginé: l'univers a-t-il jamais commencé?

Show description

Read or Download Discours sur l'origine de l'univers PDF

Similar cosmology books

Cosmology

Cosmology bargains with the present kingdom of wondering the elemental questions on the heart of the sector of cosmology. extra emphasis than traditional is wear the connections to similar domain names of technology, similar to geometry, relativity, thermodynamics, particle physics, and - particularly - at the intrinsic connections among different themes.

The Mystery of the Missing Antimatter (Science Essentials)

Within the first fractions of a moment after the large Bang lingers a question on the middle of our very lifestyles: why does the universe include topic yet nearly no antimatter? The legislation of physics let us know that equivalent quantities of subject and antimatter have been produced within the early universe--but then, whatever unusual occurred.

The Physics of Immortality: Modern Cosmology, God and the Resurrection of the Dead

A professor of physics explains how he used a mathematical version of the universe to substantiate the life of God and the chance that each human who ever lived might be resurrected from the useless. Reprint. PW.

Black Holes in Higher Dimensions

Black holes are the most awesome predictions of Einstein's common relativity. lately, rules in brane-world cosmology, string concept and gauge/gravity duality have prompted experiences of black holes in additional than 4 dimensions, with fabulous effects. In larger dimensions, black holes exist with unique shapes and weird dynamics.

Extra resources for Discours sur l'origine de l'univers

Sample text

42) b2 < 0 < b1 and x is the root of def χC (x) = + π + arccos x − b2 2 x + b2 2 1− b1 2 − x b1 2 + x − arccos 2 − b1 2 − x b1 2 + x 1− x − b2 2 x + b2 2 2 − x3/2 (t2 − t1 ). 43) 22 2 Exact solutions used in cosmology 5. Borderlines between cases Although the above cases cover all other eventualities in theory, the expressions for ψH , ψX , ΦH , etc. are not practical numerically near the borderlines between them, since very large terms are subtracted, creating excessive error. The series expansions that apply in the vicinity of the two borderlines – where the evolution is nearly parabolic, or nearly at maximum expansion at t2 – are given in Krasiński and Hellaby (2002) and Hellaby and Krasiński (2006).

3) the density distribution can be found for any instant. Initial velocity profile to a final density profile In this subsection we examine if there exists a solution of the evolution equations from a given initial velocity to a final density profile. e. t2 > t1 ⇒ R2 > R1 , with a positive value of the cosmological constant, Λ > 0. 2), therefore the values of E, Ri , M and Λ must be derived from the initial conditions. M (r) is again chosen to be the radial coordinate. 3) we can calculate R2 . 118) 38 2 Exact solutions used in cosmology where u = R1 ; we use u instead of R1 to emphasise that R1 is now an unknown variable.

1 The Lemaître–Tolman model 15 shells, and these constitute regular extrema in the spatial section of constant t. Both M,r and R,r change sign across a regular extremum. A closed model must necessarily have two origins and a spatial maximum (a ‘belly’). A vacuum model must necessarily have a spatial minimum (a ‘neck’ or ‘wormhole’). Necks may exist also in nonvacuum models, see Sec. 2 later in this text. Shell crossings, where a constant r shell collides with its neighbour, are loci of R,r = 0 that are not regular maxima or minima of R.

Download PDF sample

Rated 4.55 of 5 – based on 37 votes