Classifying immersions into IR4 over stable maps of by Harold Levine

By Harold Levine

Show description

Read or Download Classifying immersions into IR4 over stable maps of 3-manifolds into IR2 PDF

Similar mathematics books

Periodic solutions of nonlinear wave equations with general nonlinearities

Authored by means of major students, this accomplished, self-contained textual content provides a view of the state-of-the-art in multi-dimensional hyperbolic partial differential equations, with a selected emphasis on difficulties during which smooth instruments of study have proved precious. Ordered in sections of progressively expanding levels of trouble, the textual content first covers linear Cauchy difficulties and linear preliminary boundary price difficulties, prior to relocating directly to nonlinear difficulties, together with surprise waves.

Chinese mathematics competitions and olympiads: 1981-1993

This booklet includes the issues and ideas of 2 contests: the chinese language nationwide highschool festival from 198182 to 199293, and the chinese language Mathematical Olympiad from 198586 to 199293. China has an exceptional checklist within the overseas Mathematical Olympiad, and the e-book comprises the issues which have been used to spot the group applicants and choose the chinese language groups.

Extra info for Classifying immersions into IR4 over stable maps of 3-manifolds into IR2

Example text

La mesure µf est m´elangeante, et donc ergodique. Nous rappellerons les notions d’entropie topologique et d’entropie m´etrique plus loin. Depuis 1977, on sait que l’entropie topologique d’un endomorphisme de Pk (C) de degr´e alg´ebrique d 2 est k log d. La minoration est due `a Misiurewicz et Przytycki [23] et la majoration est due ` a Gromov [17]. Comme la mesure d’´equilibre µf est de jacobien constant dk , la formule de Rohlin-Parry [24] dit que l’entropie m´etrique de µf vaut k log d. Enfin, le principe variationnel affirme que l’entropie topologique est le supremum des entropies m´etriques.

On pose Γn = x, f (x), . . , f ◦n−1 (x) , x ∈ Pk (C) et on d´efinit lov(f ) = lim sup n→+∞ 1 1 log(Vol(Γn )) = lim sup log n n→+∞ n Γn ωn∧k , n o` u ωn est la forme de K¨ ahler sur Pk (C) induite par la forme de Fubini-Study sur chaque facteur. 6. — Si f : Pk (C) → Pk (C) est un endomorphisme holomorphe de degr´e alg´ebrique d, on a lov(f ) = k log d. D´emonstration. — C’est un calcul cohomologique. On a Vol(Γn ) = Γn ωn∧k = (ω + f ∗ ω + . . ,n−1}k = (1 + d + · · · + dn−1 )k = Par cons´equent, lov f = lim sup n→+∞ dn − 1 d−1 k .

Math. 162 (2005), no. 2, p. 235–270. [50] J. Ross – « Instability of polarised algebraic varieties », PhD thesis, Imperial College, 2003. [51] J. Ross & R. Thomas – « An obstruction to the existence of constant scalar curvature K¨ ahler metrics », J. Differential Geom. 72 (2006), no. 3, p. 429–466. AG/0412519, . -D. Ruan – « Canonical coordinates and Bergmann metrics », Comm. Anal. Geom. 6 (1998), no. 3, p. 589–631. [54] S. Semmes – « Complex Monge-Amp`ere and symplectic manifolds », Amer. J. Math.

Download PDF sample

Rated 4.75 of 5 – based on 47 votes