# Analyse numerique et optimisation : Une introduction a la by Gregoire Allaire

By Gregoire Allaire

Read or Download Analyse numerique et optimisation : Une introduction a la modelisation mathematique et a la simulation numerique French PDF

Similar mathematics books

Periodic solutions of nonlinear wave equations with general nonlinearities

Authored by way of top students, this entire, self-contained textual content provides a view of the cutting-edge in multi-dimensional hyperbolic partial differential equations, with a specific emphasis on difficulties during which smooth instruments of research have proved necessary. Ordered in sections of steadily expanding levels of trouble, the textual content first covers linear Cauchy difficulties and linear preliminary boundary price difficulties, ahead of relocating directly to nonlinear difficulties, together with surprise waves.

Chinese mathematics competitions and olympiads: 1981-1993

This publication includes the issues and strategies of 2 contests: the chinese language nationwide highschool pageant from 198182 to 199293, and the chinese language Mathematical Olympiad from 198586 to 199293. China has an exceptional list within the overseas Mathematical Olympiad, and the e-book comprises the issues which have been used to spot the crew applicants and choose the chinese language groups.

Extra resources for Analyse numerique et optimisation : Une introduction a la modelisation mathematique et a la simulation numerique French

Sample text

K∈Z E U IQ Ê Ñ ÖÕÙÓÒ× ÕÙ Ñ Ñ × un ×Ø ÙÒ ÓÒ Ø ÓÒ Ö ÐÐ ¸ Ð × Ó ÒØ× u ˆn (k) Ð × Ö ÓÙÖ Ö ×ÓÒØ ÓÑÔÐ Ü ×º ÍÒ ÔÖÓÔÖ Ø ÑÔÓÖØ ÒØ ÔÓÙÖ Ð ×Ù Ø Ð ØÖ Ò× ÓÖÑ ÓÙÖ Ö × ÓÒ Ø ÓÒ× Ô Ö Ó ÕÙ × ×Ø Ð ×Ù Ú ÒØ × ÓÒ ÒÓØ v n (x) = un (x + ∆x)¸ ÐÓÖ× vˆn (k) = uˆn (k) exp(2iπk∆x)º ÜÔÐ ÕÙÓÒ× Ñ ÒØ Ò ÒØ Ð Ñ Ø Ó ×ÙÖ Ð³ Ü ÑÔÐ Ù × Ñ ÜÔÐ Ø ´¾º¾µº Ú ÒÓ× ÒÓØ Ø ÓÒ×¸ ÓÒ Ô ÙØ Ö Ö Ö × Ñ ¸ ÔÓÙÖ 0 ≤ x ≤ 1¸ Y L O P H C E T N −un (x − ∆x) + 2un (x) − un (x + ∆x) un+1 (x) − un (x) +ν = 0. ∆t (∆x)2 LE O ÉC À ÈÁÌÊ ¾º Å ÌÀÇ ¼ È Ö ÔÔÐ uˆ Ø ÓÒ n+1 (k) = ÙØÖ Ñ ÒØ ÉC Ð ØÖ Ò× ÓÖÑ Ø OLE N H EC ÓÙÖ Ö¸ Ð Ú ÒØ Ó Ê Æ Ë ÁÆÁ Ë E U IQ ν∆t 1− (− exp(−2iπk∆x) + 2 − exp(2iπk∆x)) u ˆn (k).

K∈Z E U IQ Ê Ñ ÖÕÙÓÒ× ÕÙ Ñ Ñ × un ×Ø ÙÒ ÓÒ Ø ÓÒ Ö ÐÐ ¸ Ð × Ó ÒØ× u ˆn (k) Ð × Ö ÓÙÖ Ö ×ÓÒØ ÓÑÔÐ Ü ×º ÍÒ ÔÖÓÔÖ Ø ÑÔÓÖØ ÒØ ÔÓÙÖ Ð ×Ù Ø Ð ØÖ Ò× ÓÖÑ ÓÙÖ Ö × ÓÒ Ø ÓÒ× Ô Ö Ó ÕÙ × ×Ø Ð ×Ù Ú ÒØ × ÓÒ ÒÓØ v n (x) = un (x + ∆x)¸ ÐÓÖ× vˆn (k) = uˆn (k) exp(2iπk∆x)º ÜÔÐ ÕÙÓÒ× Ñ ÒØ Ò ÒØ Ð Ñ Ø Ó ×ÙÖ Ð³ Ü ÑÔÐ Ù × Ñ ÜÔÐ Ø ´¾º¾µº Ú ÒÓ× ÒÓØ Ø ÓÒ×¸ ÓÒ Ô ÙØ Ö Ö Ö × Ñ ¸ ÔÓÙÖ 0 ≤ x ≤ 1¸ Y L O P H C E T N −un (x − ∆x) + 2un (x) − un (x + ∆x) un+1 (x) − un (x) +ν = 0. ∆t (∆x)2 LE O ÉC À ÈÁÌÊ ¾º Å ÌÀÇ ¼ È Ö ÔÔÐ uˆ Ø ÓÒ n+1 (k) = ÙØÖ Ñ ÒØ ÉC Ð ØÖ Ò× ÓÖÑ Ø OLE N H EC ÓÙÖ Ö¸ Ð Ú ÒØ Ó Ê Æ Ë ÁÆÁ Ë E U IQ ν∆t 1− (− exp(−2iπk∆x) + 2 − exp(2iπk∆x)) u ˆn (k).

E L O Ä × ÓÒ Ø ÓÒ× ÙÜ Ð Ñ Ø × ´¾º½µ Ô ÙÚ ÒØ ØÖ ÔÐÙ× ÙÖ× ØÝÔ ×¸ Ñ × Ð ÙÖ Ó Ü Ò³ ÒØ ÖÚ ÒØ Ô × Ò× Ð Ò Ø ÓÒ × × Ñ ×º Á ¸ ÒÓÙ× ÙØ Ð ×ÓÒ× × ÓÒ Ø ÓÒ× ÙÜ ÐÑØ × Ö Ð Ø ÉC ÕÙ × ØÖ u(t, 0) = u(t, 1) = 0 ÔÓÙÖ ØÓÙØ t ∈ R+ ∗ Ù × ÒØ Ò un0 = unN +1 = 0 ÔÓÙÖ ØÓÙØ n > 0. , N }¸ C E T Y L PO Ò× ÕÙ Ù× Ñ ÑÔÐ Ø n+1 −un+1 un+1 − unj − un+1 j j−1 + 2uj j+1 +ν = 0. ∆t (∆x)2 LE O ÉC HN E U IQ ´¾º¾µ ´¾º¿µ ¾º¾º Á Ê Æ Ë ÁÆÁ Ë ÈÇÍÊ Ä³ ÉÍ ÌÁÇÆ ÁÐ ×Ø Ð Ú Ö Ö ÕÙ Ð × ¹ Ö ÕÙ³ÓÒ Ô ÙØ Ð ÙÐ Ö Ð × Ú Ð Ñ ØÖ ØÖ ÓÒ Ð ÖÖ ⎛ 1 + 2c −c ⎜ −c 1 + 2c ⎜ ⎜ º º ⎜ º ⎜ ⎝ 0 LE O ÉC À Ä ÍÊ ¿¿ E U IQ Ñ ÑÔÐ Ø ´¾º¿µ ×Ø Ø Ú Ñ ÒØ Ò Ò ¸ ³ ×Ø¹ Ò ÓÒ Ø ÓÒ × unj Ò Ø¸ Ð ÙØ ÒÚ Ö× Ö Ð ÙÖ× un+1 j Ø ÐÐ N ⎞ 0 ⎟ −c ⎟ ν∆t ⎟ ºº ºº , ´¾º µ ⎟ Ú c= º º ⎟ (∆x)2 −c 1 + 2c −c ⎠ −c 1 + 2c T Y POL ÓÒØ Ð ×Ø × Ú Ö ÓÑ Ò ×ÓÒ ÓÒÚ Ü N H EC Ä ÖÐ Ö Ø Ö Ò ÔÓ× Ø ¸ ÓÒ ÒÚ Ö× Ð º Ò ´¾º¾µ Ø ´¾º¿µ¸ ÔÓÙÖ 0 ≤ θ ≤ 1¸ ÓÒ Ó Ø ÒØ Ð θ¹× × ÒØ ÙÒ Ñ n+1 −un+1 un+1 − unj − un+1 −unj−1 + 2unj − unj+1 j j−1 + 2uj j+1 + θν + (1 − θ)ν = 0.